On Growth in an Abstract Plane

نویسندگان

  • NICK GILL
  • HARALD A. HELFGOTT
  • MISHA RUDNEV
چکیده

There is a parallelism between growth in arithmetic combinatorics and growth in a geometric context. While, over R or C, geometric statements on growth often have geometric proofs, what little is known over finite fields rests on arithmetic proofs. We discuss strategies for geometric proofs of growth over finite fields, and show that growth can be defined and proven in an abstract projective plane – even one with weak axioms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling Behavior of Composite Plates with a Pre-central Circular Delamination Defect under in-Plane Uniaxial Compression

Delamination is one of the most common failure modes in composite structures. In the case of in-plane compressional loading, delamination of a layered flat structure can cause a local buckling in delaminated area which subsequently affects the overall stiffness of the initial structure. This leads to an early failure of the overall structure. Moreover, with an increase in load, the delaminated ...

متن کامل

بررسی اثر قارچ‌های میکوریزا بر رشد و جذب عناصر غذایی درختان چنار

Plane tree is one of the important trees cultivated in urban landscapes of Iran and often suffers from different nutritional issues including deficiency and toxicity of mineral nutrients. Mycorrhizal fungi have been introduced to increase growth and quality of plants in horticulture. To study the combined effect of two mycorrhizal fungi (G. mosseae and G. intraradices) on plane trees, an experi...

متن کامل

A Cohesive Zone Model for Crack Growth Simulation in AISI 304 Steel

Stable ductile crack growth in 3 mm thick AISI 304 stainless steel specimens has been investigated experimentally and numerically. Multi-linear Isotropic Hardening method coupled with the Von-Mises yield criterion was adopted for modeling elasto-plastic behavior of the material. Mode-I CT fracture specimens have been tested to generate experimental load-displacement-crack growth data during sta...

متن کامل

An equivalent representation for weighted supremum norm on the upper half-plane

In this paper, rstly, we obtain some inequalities which estimates complex polynomials on the circles.Then, we use these estimates and a Moebius transformation to obtain the dual of this estimates forthe lines in upper half-plane. Finally, for an increasing weight on the upper half-plane withcertain properties and holomorphic functions f on the upper half-plane we obtain an equivalentrepresenta...

متن کامل

A remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane

In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013